

Part B Section A Write the answer of the following questions : (Each carries 2 Mark) 1. I = 1.5 A $t = 10 \min$ $= 10 \times 60$ sec = 600 secQuantity of electricity $Q = I \times t$ $= 1.5 \times 600$ = 900 C900 $F = \overline{96500} = 0.009326 F$ cathode = $Cu^{2+} + 2e^{-} \rightarrow Cu$ 2F gives 1 mol copper \therefore 2F gives \rightarrow 63.5 g copper : 0.009326 F give (?) $W_{Cu} = \frac{0.009326 \times 63.5}{2} = 0.296 \text{ g}$ 2. Molecularity of a reaction : The number of reacting species (atoms, ions or molecules) taking part in an elementary reaction, which must collide simultaneously in order to bring about a chemical reaction is called molecularity of a reaction. For elementary reaction, order of a reaction and molecularity of a reaction are same. The reaction can be unimolecular when one reacting species is involved. For example decomposition of ammonium nitrite. $NH_4NO_2 \rightarrow N_2 + 2H_2O$ Bimolecular reactions involve simultaneous collision between two species, for example, dissociation of hydrogen iodide. 2HI \rightarrow $H_{2} + I_{2}$ Trimolecular or tetramolecular reactions involve simultaneous collision between three reacting species, for example, 2NO + O2 $\rightarrow 2NO_2$ The probability that more than three molecules can collide and react simultaneously is very small. Hence, the reaction with the molecularity three are very rare and slow to proceed. 3. Lanthanoids primarily show three oxidation states (+2, +3, +4). Among these oxidation states, +3 state is the most common. Lanthanoids display a limited number of oxidation states because the energy difference between 4f, 5d, and 6s orbitals is quite large. On the other hand, the energy difference between 5f, 6d, and 7s orbitals is very less. Hence, actinoids display a large number of oxidation states. For example, uranium and plutonium display +3, +4, +5, and +6 oxidation states while neptunium displays +3, +4, +5, +7. The most common oxidation state in case of actinoids is also +3. 4. (i) Transition metals show paramagnetic behaviour. Paramagnetism arises due to the presence of unpaired electrons with each electron having a magnetic moment associated with its spin angular momentum and orbital angular momentum. However, in the first transition series, the orbital angular momentum is quenched. Therefore, the resulting paramagnetism is only because of the unpaired electron. Magnetic moment is culculated by following formula. $\infty = \sqrt{n(n+2)}$ B.M.

where n = No. of unpaired electron

- (ii) Transition elements have high effective nuclear charge and a large number of valence electrons. Therefore, they form very strong metallic bonds. As a result, the ethalpy of atomization of transition metals in high.
 - (iii) Most of the complexes of transition metals are coloured. This is because of the absorption of radiation from visible light region to promote an electron from one of the d-orbitals to another.
 - In the presence of ligands, the d-orbitals split up into two sets of orbitals having different energies. Therefore, the transition of electrons can take place from one set to another.
 - The energy required for these transitions is quite small and falls in the visible region of radiation. The ions of transition metals absorb the radiation of a particular wavelength and the rest is reflected, imparting colour to the solution.
 - (iv) The catalytic activity of the transition elements can be explained by two basic facts.

(a) Owing to their ability to show variable oxidation states and form complexes, transition metals form unstable intermediate compounds. Thus, they provide a new path with lower activation energy, E_a , for the reaction.

- (b) Transition metals also provide a suitable surface for the reactions to occur.
- e.g. V₂O₅ in contact process, Fe in Haber's process.
- 5.
 - (i) It involves a number of assumptions.
 - (ii) It does not give quantitative interpretation of magnetic data.
 - (iii) It does not explain the colour exhibited by coordination compounds.
 - (iv) It does not give a quantitative interpretation of the thermodynamic or kinetic stabilities of coordination compounds.
 - (v) It does not make exact predictions regarding the tetrahedral and square planar structures of 4-coordinate complexes.
 - (vi) It does not distinguish between weak and strong ligands.


```
    Solution :
```


CH₂Cl

It is primary halide and therefore undergoes S_N2 reaction faster.

· _____ I

As iodine is a better leaving group because of its large size, it will be released at a faster rate in the presence of incoming nucleophile.

Mat

```
8.
```

7.

But-l-ene to n-butyliodide

$$CH_{3} - CH_{2} - CH = CH_{2} \xrightarrow{HBr} CH_{3} - CH_{2} - CH_{2} - CH_{2} - Br \xrightarrow{-NaBr} CH_{3} - CH_{2} - CH_{2} - CH_{2} - H_{2} - H_{$$

9.

From benzenesulphonic acid :

Benzene is sulphonated with oleum and benzene sulphonic acid so formed is converted to sodium phenoxide on heating with molten sodium hydroxide. Acidification of the sodium salt gives phenol.

- Amino acids are usually colourless, crystalline solids.
- These are water-soluble, high melting solids and behave like salts rather than simple amines or carboxylic acids.
- This behaviour is due to the presence of both acidic (Carboxylic acid group) and basic (amino group) groups in the same molecule.
- "In aqueous solution the carboxyl group can lose a proton and amino group can accept a proton; giving rise to a dipolar ion known as zwitter ion."
- This is neutral but contains both positive and negative charges

$$\begin{array}{c} O \\ R-CH-C-O-H \\ \vdots NH_{2} \end{array} \begin{array}{c} H_{3} \\ CWHer \\ CWHer \\ \end{array}$$

- ▶ In zwitter ionic form, amino acids show amphoteric behaviour as they react both with acids and bases.
- 12.
- "Protein found in a biological system with a unique 3-D structure and biological activity is called a native protein."
- When a protein in its native form, is subjected to physical change like change in temperature or chemical change like change in pH, the hydrogen bonds are disturbed.
- Due to this globules unfold and helix get uncoiled and protein loses its biological activity. This is called denaturation of protein.
- ➡ During denaturation 2° and 3° structures are destroyed but 1° structure remains intact.
- The coagulation of egg white on boiling is a common example of denaturation. Another example is curdling of milk is caused due to the formation of lactic acid by the bacteria present in milk.

Section B

\triangleright	Write the answer of the following questions : (Each carries 3 Mark)		
13.			
₩	Cane Sugar : 5% W/W		

 $W_2 = 5 g$ $W_1 = 95 g$ $T_f = 271 \text{ K}, \qquad T_f^0 = 273.15 \text{ K}$ $M_{2} = 342 \text{ g/Mol}$ $\Delta T_f = T_f^0 - T_f$ = 273.15 - 271= 2.15 K $W_2 \times 1000$ $\Delta T_f = K_f. \quad M_2 \times W_1$ $\Delta T_f \times M_2 \times W_1$ $\therefore K_f = \boxed{W_2 \times 1000}$ $2.15 \times 342 \times 95$ 5×1000 $K_{e} = 13.97 \text{ K.kg.Mol}^{-1}$ glucose : 5% W/W $W_2 = 5g W_1 = 95 g$ $M_2 = 180 \text{ g.Mol}^{-1} \Delta T_f = (?)$ $W_{2} \times 1000$ $\Delta T_f = K_f. \quad M_2 \times W_1$ 5×1000 iberty $= 13.97 \times \overline{180 \times 95}$ $\Delta T_f = 4.08 \text{ K}$ $\therefore \Delta T_f = \frac{T_f^0}{T_f} - T_f$ $\therefore 4.08 = 273.15 - T_f$ $\therefore T_f = 273.15 - 4.08$ = 269.06 K 14. $2Fe^{3+} + 2I^- \rightarrow 2Fe^{2+} + I_2$ $E_{cell}^0 = 0.236 \text{ V}, \Delta_r G^6 = ?, K = ?$ (1) $\Delta_r G^6 = -nF E^0_{cell}$ $= -2 \times 96487 \times 0.236$ = -45542 J= -45.54 kJ(2) $\Delta_r G^6 = -2.303 \text{ RT} \log K_C$ $-45542 = -2.303 \times 8.314 \times 298 \times \log K_C$ $\therefore \log K_{C} = 7.9816$: $K_{C} = Antilog (7.9816) = 9.6 \times 10^{7}$ 15. Arrhenius equation, E $\log k = \log A - \overline{2.303RT}$ E $\therefore \log A = \log k + 2.303 RT$ Here, T = 546 K, k = $2.418 \times 10^{-5} \text{ s}^{-1}$ E_a = 179.9 kJ/mol = 179900 J/mol A = ?

179900

 $\therefore \log A = \log 2.418 \times 10^{-5} + \overline{2.303 \times 8.314 \times 546}$ $\therefore \log A = \log 2.418 + \log 10^{-5} + 17.2082$ $\therefore \log A = 0.3834 - 5.0 + 17.2082$

 $\therefore \log A = 12.5917$

 \therefore A = antilog 12.5917 = 3.9057 × 10¹² sec⁻¹.

16.

- Dichromates are generally prepared from chromate. which in turn are obtained by the fusion of chromite ore (FeCr₂O₄) with sodium or potassium carbonate in free access of air.
- ➡ The reaction with sodium carbonate occurs as follows

4 $\operatorname{FeCr_2O_4} + 8 \operatorname{Na_2CO_3} + 7 \operatorname{O_2} \rightarrow 8 \operatorname{Na_2CrO_4} + 2 \operatorname{Fe_2O_3} + 8 \operatorname{CO_2}$

The yellow solution of sodium chromate is filtered and acidified with sulphuric acid to give a solution from which orange sodium dichromate, Na₂Cr₂O₇. 2H₂O can be crystallised.

 $2Na_2CrO_4 + 2 H^+ \rightarrow Na_2Cr_2O_7 + 2 Na^+ + H_2O$

Sodium dichromate is more soluble than potassium dichromate. The latter is therefore, prepared by treating the solution of sodium dichromate with potassium chloride.

 $Na_2Cr_2O_7 + 2 \text{ KCl} \rightarrow K_2Cr_2O_7 + 2 \text{ NaCl}$

- ➡ Orange crystals of potassium dichromate crystallise out.
- ➡ The chromates and dichromates are interconvertible in aqueous solution depending upon pH of the solution.

$$2 \operatorname{CrO}_4^{2-} + 2\mathrm{H}^+ \rightarrow \operatorname{Cr}_2\mathrm{O}_7^{2-} + \mathrm{H}_2\mathrm{O}$$

 $\operatorname{Cr}_2\mathrm{O}_7^{2-} + 2 \operatorname{OH}^- \rightarrow 2 \operatorname{CrO}_4^{2-} + \mathrm{H}_2\mathrm{O}$

17.

	SN ² Reaction	SN ¹ Reaction
1	SN ² reaction means it is bimolecular nucleophilic substitution reaction.	SN ¹ reaction means it is unimolecular nucleophilic substitution reaction.
2	The rate of SN^2 reaction depends on the concentration of Substrate and Nucleophiles both. Rate = K [S] ¹ . [Nu] ¹	The rate of SN^1 reaction depends on the concentration of Substrate on.Rate = K [S] ¹
3	SN ² reaction follow second order kinetics.	SN ¹ reaction follows first order kinetics.
4	The reaction of chloromethane and hydroxide ion gives methanol and chloride ion is example of SN^2 reaction. $CH_3 - CI + :OH^- \longrightarrow CH_3 - OH + :CI^-$ Substrate Nucleophiles Methanol	The reaction of tert-butyl bromide with hydroxide ion gives tert-butyl alcohol is example of SN ¹ reaction. $CH_3 \longrightarrow CH_3 \longrightarrow CH_3 \longrightarrow CH_3 - CH_3 + CH_3 \longrightarrow CH_3$ $CH_3 \longrightarrow CH_3 \longrightarrow CH_3 - CH_3 + CH_3 \oplus CH_3$ tert-butyl bromide tert-butyl Alcohol
5	SN ² reaction complete in a single step without formation of an intermediate.	 SN¹ reaction complete in two steps. Step 1 : Formation of carbocation by cleavage of C – X in haloalkane Step 2 : Attack of nucleophiles on carbocation to form product.
6	Reactivity order :	Reactivity order

		$CH_3 - X > 1^{\circ} - halide > 2^{\circ} - halide > 3^{\circ} - halide$	$\begin{array}{c} 1^{\circ-} \\ \text{halide} \end{array} \begin{array}{c} 2^{\circ-} \\ \text{halide} \end{array} \begin{array}{c} 3^{\circ-} \\ \text{halide} \end{array} \begin{array}{c} CH_3 - X \end{array}$		
	7	SN ² reaction shows inversion of configuration.	SN ¹ reaction shows reacemic mixture.		
18.			<u>.</u>		
	(i) 1-prop	oxypropane :			
	СЦ				
	СП,	$\operatorname{CH}_2\operatorname{CH}_2\operatorname{CH}_2\operatorname{CH}_2\operatorname{CH}_3 \operatorname{373}\operatorname{K} \operatorname{CH}_3\operatorname{CH}_2\operatorname{CH}_2 \operatorname{OH} \operatorname{CH}_3$			
••	l-p (ii) metho	ropoxypropane propan-1-ol	1-iodopropane		
-	(11) 11101	ОСН, ОН			
	Met	$\begin{array}{c} & & \\$			
₩	(iii) benz	yl ethyl ether :			
		$CH_2 - O - C_2H_5$ CH_2I			
		$\underbrace{\text{HI, 373 K}}_{\text{Ethance}} + C_2 H_5 H_5 H_5 H_5 H_5 H_5 H_5 H_5 H_5 H_5$	DH al		
	benz	zyl ethyl ether benzyliodide			
19.					
₩	A is an o	rganic compound with a molecular formula C ₈ H ₁₆ O ₂ .	This gives a carboxylic acid (B) and alcohol (C) on hyd	rolysis	
	with dilu	e sulphuric acid. Thus, compound A must be an ester.			
₩	Further, oxidation of alcohol (C) with chromic acid gives acid B. Thus, B and C must contain an equal number of carbon atoms.				
•	A total of 8 carbon atoms are present in compound A, each of B and C contain 4 carbon atoms.				
-	Again, alcohol C gives but-1-ene on dehydration. Therefore, C is of straight-chain and hence, it is butan-1-ol.				
-	Hence th	e ester with molecular formula $C_0H_{c}O_{c}$ is butylbutan	utanoic acio.		
	All the gi	ven reactions can be explained by the following equations $c_{1} = c_{1} + c_{2} + c_{3} + c_{4} + c_{5} + c_$	nns.		
	СН ₃ СН	$ \begin{array}{c} O \\ \parallel \\ I_2CH_2 - C - O - CH_2CH_2CH_2CH_3 \end{array} & \begin{array}{c} \text{Dil } H_2SO_4 \\ \hline \\ Hydrolysis \end{array} $ Butylbutanoate (A)	\rightarrow		
	Mol	ecular formula = $C_8 H_{16} O_2$	2		
		CH,CH,CH, –	∥ C – OH + CH, – CH,– CH, – CH, – OH		
		Butanoic ac	cid Butan-1-ol		
		(B)	(C)		
			O II		
	СН,СН,	$CH_{2}CH_{3}OH \xrightarrow{CrO_{3}/CH_{3}COOH} CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}CH_$	 - С – ОН		
	B	utan-1-ol Butanoi	c acid		
		(C) (B)		
Dehydration					
	CH	$-H_2O$ \rightarrow H_3CH_2CH			
		Dui-1-6			

- 20.
 - Benzenesulphonyl chloride (C₆H₅SO₂Cl) which is also known as Hinsberg's reagent, reacts with primary and secondary amines to form sulphonamides.
 - (a) The reaction of benzene sulphonylchloride with primary amine yields N-ethyl benzene sulphonyl amide.
 - The hydrogen attached to nitrogen in sulphonamide is strongly acidic due to the presence of strong electron withdrawing sulphonyl group. Hence it is soluble in alkali.
 - (b) In the reaction with secondary amine, N, N-diethyl benzene sulphonamide is formed.

- Since, N, N-diethylbenzene sulphonamide does not contain any hydrogen atom attached to nitrogen atom, it is not acidic and hence, it insoluble in alkali.
- (c) Tertiary amines do not react with benzenesulphonyl chloride. This property of amines reacting with benzenesulphonyl chloride in a different manner is used for the distinction of primary, secondary, and tertiary amines and also for the separation of a mixture of amines. However these days benzenesulphonyl chloride is replaced by p-toluenesulphonyl chloride. (PTS)

- "Aliphatic and aromatic primary and secondary amines react with acid chlorides, anhybrides and esters by nucleophilic substitution reaction. This reaction is known as acylation."
- This reaction is the replacement of hydrogen atom of $-NH_2$ and > N H of group by the acyl group.
- ► The reaction is carried out in the presence of a base stronger than the amine like pyridine, which removes the formed HCl and shifts the equilibrium to the right hand side.

$$\begin{array}{cccc} CH_3 & H & CH_3 \\ C_2H_5 - \overset{|}{\mathbf{N}} - \overset{|}{\mathbf{N}} - \overset{|}{\mathbf{C}} - CI & \overset{|}{\underset{\substack{\mathbf{Base}\\\mathbf{Pyridine}\\\mathbf{H}\\\mathbf{SO}\\\mathbf{Ethanamine}}} & C_2H_5 - \overset{|}{\mathbf{N}} - \overset{|}{\underset{\substack{\mathbf{C}\\\mathbf{C}\\\mathbf{C}\\\mathbf{C}}} - CI \rightarrow C_2H_5 - \mathbf{N} - \mathbf{C} - CH_3 + H - CH_3 + H$$

$$\begin{array}{c} H \\ C_2H_5 - N; + CH_3 - C - CI \\ \downarrow \\ C_2H_5 \end{array} \xrightarrow[]{} \begin{array}{c} Base \\ \hline Pyridine s, - N \\ \downarrow \\ C_2H_5 \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} Base \\ \hline Pyridine s, - N \\ \neg \\ C_2H_5 \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \neg \\ \neg \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \cdots \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \xrightarrow[]{} \begin{array}{c} \cdots \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\\end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \end{array} \xrightarrow[]{} \begin{array}{c} \cdots \\ \end{array} \xrightarrow[]{}$$

N-Ethylethanamine

N-Ethylethanamide

$$\begin{array}{cccc} C_{6}H_{5}-\overset{"}{N}-H + CH_{3}-C-O-C-CH_{3} \rightarrow C_{6}H_{5}-\overset{"}{N}-C-CH_{3}+CH_{3}COOH\\ & \parallel & \parallel & \parallel \\ H & O & H & O \end{array}$$

Benzenamine Ethanoic anhydride N-Methyl benzamide

Amines also react with benzoyl chloride (C₆H₅COCl) this reaction is known as benzoylation.

 $CH_2NH_2 + C_6H_5COCl \rightarrow CH_2NHCOC_6H_5 + HCl$

Methanamine Benzoyl N-methylbenzamide chloride

```
Section C
```


Calculate Equilibrium constant $\Delta_{c}G^{6} = -2.303 \text{ RT} \log K_{C}$ -196.86 $\therefore \log K_{C} = -2.303 \times 8.314 \times 298$ $\therefore \log K_{C} = 34.501$ \therefore K_C = Antilog of (34.501) $\therefore K_{\rm C} = 3.17 \times 10^{34}$ 24. Decomposition reaction of SO₂Cl₂,
$$\begin{split} & SO_2Cl_2(g) \ \rightarrow \ SO_2(g) \ + \ Cl_2(g) \\ \text{Pressure at time } t = 0 \ s \ p_i \ atm \ 0 \ atm \ 0 \ atm \end{split}$$
Pressure at time t $p_i - x atm x atm$ x atm p_i is initial pressure at time t = 0 s .: Total pressure at time t, $\mathbf{p}_t = \mathbf{p}_i - \mathbf{x} + \mathbf{x} + \mathbf{x} = \mathbf{p}_i + \mathbf{x}$

 $\therefore \mathbf{x} = \mathbf{p}_t - \mathbf{p}_i$

 $\therefore p_{(SO2Cl2)} = p_i - x = p_i - (p_t - p_i) = 2p_i - p_t atm.$ iberty

For experiment - 1

At time t = 0 s, Initial pressure $p_i = 0.5$ atm

At time t = 100 s, $p_{(SO2C12)} = 2p_i - p_t$

- $= 2 \times 0.5 0.6$
- = 0.4 atm

For first order reaction,

$$\therefore k = \frac{2.303}{t} \log \frac{P_i}{P_{SO_2Cl_2}} = \frac{2.303}{100} \log \frac{0.5}{0.4} = \frac{2.303}{100} \times 0.0969$$

 \therefore k = 2.2318 × 10⁻³ sec⁻¹

For experiment-2

At time t = 0 s, Initial pressure $p_i = 0.5$ atm

 $p_{SO2C12} = 2p_i - p_t = 2 \times 0.5 - 0.65 = 0.35$ atm

```
\therefore rate = k \cdot p<sub>SO2C12</sub>
```

$$= 2.2318 \times 0.35 \times 10^{-3} \text{ sec}^{-1}$$

$$= 0.78113 \times 10^{-3}$$

$$= 7.8113 \times 10^{-4} \text{ atm. sec}^{-1}$$

25.

In [NiCl₄]²⁻ nickel is in +2 oxidation state and has the electronic configuration

Ni²⁺ ion $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$ 3d 4s 4p

Cl⁻ is weak ligand so electron does not get paired.

In tetrahedral complexes one s and three p orbitals are hybridized to form four equivalent orbitals oriented tetrahedrally.

⇒ (a) Propanal acts as both nucleophile as well as electrophile.

 $\begin{array}{c} \text{OH} \quad \text{CH}_3\\ \mid \quad \mid\\ \text{CH}_3\text{CH}_2\text{CH} - \text{CH} - \text{CHO}\\ \text{CH}_3\text{CH}_2\text{CHO} + \text{CH}_3\text{CH}_2\text{CHO} \longrightarrow \end{array} \\ 3\text{-Hydroxy-2-methylpentanal} \end{array}$

(b) Propanal as electrophile and butanal as nucleopile.

$$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\$$

(c) Butanal as electrophile and propanal as nucleophile.

$$\begin{array}{rcl} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

(d) Butanal acts as both nucleophile as well as an electrophile.

$$CH_{2}CH_{2}CH_{2}CHO + CH_{3}CH_{2}CH_{2}CHO \longrightarrow CH_{3}CH_{2}CHO + CH_{3}CH_{2}CH_{2}CHO \longrightarrow CH_{3}CH_{2}CHO + CH_{3}CHO + CHO + CHO$$

27.